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In this article atime-dependentnolecular system is considered. The theoretical treatment is characterized by
the fact that here, for the first time, the adiabatic framework is assumed to contain singular nonadiabatic
coupling terms or, in other wordspnical intersectionsThe aim is to derive under these conditions, from

first principles and in a rigorous manner, the time-dependent nuclear Schroedinger equations to be solved.
We arrived at two different versions: (1) the “ordinary” version, which is essentially similar to the one
encountered within the time-independent scheme and demands the fulfillment of the spatial Curl condition
(Baer, M. Chem. Phys. Lettl975 35, 112), and (2) a novel version, which introduces the tirsgace
configuration and consequently demands the fulfillment of a “four’-component Curl condition, reminiscent
of the one in special relativity (R. Baer, M. Baer, D. K. Hoffman, and D. J. Kouri, to be published). Both
versions lead to the same number of Schroedinger equations, but within the second version, the time-dependent
interaction is treated much more reliably.

I. Introduction ics”® but were shown to play a dominant role in molecular
dynamics as welt™*

The starting point of any study of electronic effects in
molecular systems is the Bott©ppenheimer (BO) assumption
that electrons are moving much faster than nuclei and therefore,
?heoretically, one can treat first the dynamics of the electrons

As more and more groups show interest in treating molecular
interactions which involve electronic transitioh$ thought it
would be useful to discuss some difficulties in treating such
processes and present theoretical ways to handle them. Ther
is no dC.’Ubt that_ trea_ting mo_IecuIar interaction_s affected by and then consider the motion of the nuéédio continue, one
electronic nonadiabatic coupling terms (NACT) is much more

- e ; may choose either the adiabatic framework which consists of
complicated than treating interactions where these effects areyna adiabatic potential energy surfaces (PES) and the NACTs
ignored. The main reason is that NACTs are frequently sindgular '

d this is believed introd ; bl . ,I or the diabatic framework which is expressed in terms of the
3%. tl'.s Is_believe LO mtrr? #ce |S|§ur:m(§)rnta € numermﬁ diabatic potential matrix. Since the elements of the diabatic PES
ifficulties. Scanning through the published literature, one will 440y are smooth functions of the coordinates (and NACTs

notlcg that in many cases the NACTs are not as sgnou;ly are usually not) the diabatic framework is preferred for treating
considered as they should be. In contrast to the familiar vib- 1o 1y clear dynamics of the nuclei and indeed all rigorous

rotational coupling terms which are well understood and usually quantum mechanical treatments aim at reachidg%iti2 The
handled correctly, the NACTSs are kinds of physical magnitudes izpatic framework can be formed in three ways: (1)The first
which in most cases are either ignored or circumvented without i ihe direct way, namely, deriving an electronic basis set as
proper justifications. If ignored, not much can be adde_d except el as a set of eigenvalues calculated at a given (one, single)
to say that the results have to be considered unreliable andp,int in configuration space and applying them to calculate the
eventually nonrelevant. More serious difficulties are encountered yigpatic potential matrix at any requested point (see, for instance,
with treatments that circumvent the need to consider NACTS |of 4a, Appendix D); (2) The second is tinelirectway, namely,

and give the inexperienced user the impression that theseyeriving for each point in configuration space the electronic
treatments are well established and numerically sound. As it gjgenvalues (which are recognized as the adiabatic potentials)
turns out it is impossible to circumvent the NACTS because in an the electronic eigenfunctions needed to calculate the NACTs
treating electronic transitions one hmsknowthe size of the and, then, employing these NACTSs, to form the transformation
Hilbert subspace (namely the number of strongly coupled tq the diabatic framework: This transformation is termed as
eigenstates) in the region of interest, and this can be obtainediye adiabatic-to-diabatic transformation, or by its acronym ADT,
only by studying the NACTS: This statement may be more  gnd as was discussed on many other occasions the ADT yields
confusing than enlightening but we elaborate on this subject in 3 meaningful diabatic potential matrix if and only if certain
the next two paragraphs. A NACT is a vector characterized by conditions (to be discussed below) are fulfilled. (3) There is
two features: it has its origin in a degeneracy point (i.e., where gjso a third way which is similar to the previous one as it is
two electronic eigenstates become identié&ilown also as a  pased on an ADT matrix, but the relevant matrix elements are
conical intersectiond()® and it has a spatial distribution which  notcalculatedfromthe NACTsbutemployingother consideraties?
decreases likg™* whereq is a the distance from tha.® Conical It is important to mention that there are other approaches,
intersections are well-established concepts in solid-state phys-nonrigorous, which differ significantly from the ones just
mentioned. Such are the quasi-classiéakmiclassical? mixed
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classical approaché8 These approaches are usually approxi- presented the perturbative approach for treating the-BD
mate and are mainly designed to treat larger molecular systemsequation, in the fourth the nonperturbative approach is discussed,
which are beyond the capability of the pure quantum methods. and in the last section the conclusions are discussed and
In the present article, we consider the rigorous quantum summarized.

mechanical methods only.

There is no doubt that on the face of it thect way of II. Theoretical Background: The Time-Independent
reaching the diabatic framework is more convenient. Indeed, SYStem
as long as the various NACTSs are regular functions at every  The nonadiabatic coupling matrix elemen, the central
point in configuration space (or at least in that part of interest) magnitude of this article, is defined as
this procedure is valid and simple. However, in case certain
NACTSs become singular, as for instance in the case of the H T = gIveh ij={1,.} )
H, systemt”18this procedure is most likely to fail and therefore
is expected to yield irrelevant results. To find out if such singular Where the grad operator is expressed with respect to the nuclear
NACTSs exist one has to “move” into the adiabatic framework coordinates,v, and the gk(elv) functions, k = j,i, are the
and calculate them for a highly dense grid of points which, in eigenfunctions of the time-independent (TID) electronic Hamil-
turn, makes this procedure (i.e., tliirect one) essentially  tonianHe(ev):
redundant. Another difficulty associated with tfieectapproach .
has to do with the size of the required group of states that has (He(elv) — u()G(elv) = 0; k=]ji )
to be included in the calculations (which is equivalent to the . i .
smallest number ofdiabatic states which can be considered Here e stands for the electronic coordinates andv) is the
as beingisolatedfrom the rest of the Hilbert space see the KN (adiabatic) PES. The NACTs become apparent, at a
detailed discussion on this subject in ref 19). We showed in SOmewhat later stage, following the BO treatment which leads
numerous articles that dynamic calculations are meaningless©, the nuclear SE. Assuming we encounter the situation of a
unless they are carried out fetcha Hilbert subspace but the Hilbert subspace (as briefly defined in the Introduction) the
size of this Hilbert subspace (in a given region) can be obtained Nuclear SE becomés:
only by employing the NACTSs. The reason for this is associated 2
with the ability to formsinglevalueddiabatic potentials. Such — h—(V + r)z‘l‘ +U—-—BEW¥Y=0 3)
potentials are guaranteed if and only if the Hilbert subspace is 2m
not coupled (or, at most, weakly coupled) to the rest of the
Hilbert space:*1°To find out whether a given Hilbert subspace
forms an isolated group of states we need the relevant NACT
matrix of the same size (i.e., dimension). In summary, whatever
approach one uses to treat the nuclear system a detailed stud
of the NACTSs is required first. Thus, in order to carryout a
reliable dynamical treatment of a molecular system (e.g.,
scattering processes, photodissociation, unimolecular processes),
the adiabatic framework can never be circumvented. In other fol
words any diabatization process has to be started in the adiabati
framework and the diabatic framework is best reached applying
the ADT matrix. In what follows, whenever we mention a 5| VH 5,0

wherer is an antisymmetric matrix which contains the NACTs
defined in eq 1u is a diagonal matrix that contains the nuclear
PESs (introduced through eq 2 is a column vector that
contains the nuclear wave functions to be soleid, the energy,
¥ind m is the mass of the system (it is assume that the grad
operator is defined with respect to mass-scaled coordinates).
The T matrix is characterized by two important features:

(1) Some of its elements can become singular. The singularity
lows from the Hellmanr-Feynman theorem which also yields

n explicit expression for each matrix elemept

Hilbert subspace we refer to asolatedgroup of states. i - (4)
The subject to be treated in the present article is related to ! !
the diabatization to be carried out for a BO system exposed t0 e ue k = j,i are the corresponding eigenvalues defined in

an external time-dependent (TD) electric fiétWe assume g 2 |t is well noticed that when thth and thejth eigenvalues

an electric field and not an electromagnetic field in order to pacome degenerate the correspondingatrix element, i.ez;

avoid the electromagnetic vector potential, which, for our pecomes singular. This is expected, when it happens, between
purpose unnecessarily complicates the theoretical derivations.qo consecutive states namely the jth and fHeljth one.

We discuss two procedures: (a) the perturbative approach which 2) The components of the matrix fulfill (in the case of a

can be considered as the traditional approach; (b) the nonperypert subspace) the following set of equatidas:
turbative approach which introduces novel ideas such as a

“four”-component curl equation (“four” in the sense of field o_ _9_ —0: K 5
theory or special theory of relativity). This particular issue was apra ogt (77l =0 { p.aK} ®)

addressed in a review article by Englman and Yahabm, _
whereas the more general aspect is discussed in two more recenwhereq andp are any of thek components of (K is equal to
articles?? the number of internal nuclear coordinates). This set can be

The two procedures yield different expressions (but the same Written also in a more compact way:
number of nuclear equations) for the final diabatic (nuclear) . _

TD Schrainger equations (SE) to be solved. Following the Curle = [r x7] =0 ©)
theoretical presentation, we discuss to some extent the advan£quation 5 (or eq 6) is sometimes called the Curl condition or
tages and disadvantages of each approach. also the Curl equation.

The article is arranged in the following way: In the next The next subject is related to the adiabatic-to-diabatic
section we briefly summarize the theoretical background related transformation. Again we just scan through the main expres-
to the present subject (essentially summarizing the theory for sions. The aim of the diabatization is to eliminate the unpleasant
the time-independent framework), in the third section is singular NACTs from eq 3, and for this purpose, we perform
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the following transformation?

Y =AD @)

Substituting eq 7 into eq 3, performing the usual algebra, and
demanding the elimination of thematrix yields the following
results:

(a) The new (diabatic) SE is

h2

2
— 5V + (W — E)® =0

(8)
where the diabatic potenti&V is given in the following form:

©)

(b) The ADT matrix,A, which is a solution of the first-order
differential equation, &

w =A%uA

VA+7A=0 (20)
Equation 10 is solved along contoufs}!!

As a final point in this section we mention that fulfillment
of the Curl equation (egs 5 or 6) in a given region is a sufficient
condition for eq 10 to have a solution in that region. More about
this subject can be found in ref 4.

lll. The Time-Dependent Perturbative Approach

The starting point is the TBSE for the total wave function,
W, of the electrons and the nuck&i22®

S

where the electronic Hamiltoniaie, is time dependent for
> 0, i.e.,He = He(t). Following Born and Oppenheimé¥ is
presented in the following form:

Ky +H)‘I’ (11)

oW
if ot 2m

Welty) = (e)y(ty) (12)

(herelT(ev) is a row vector, in contrast tg(e|v) which is a
column vector) and we assume tlige|v) is a TID basis set
which fulfills eq 2, but only for t< 0. Substituting eq 12 into
eq 11 yields the following TD equation for the nuclear wave
functions:

e = — v W)+ HCY)  (13)

or

o TOY
ihe o

2
BTy + 2vE Iy + () + (R (19)

Multiplying eq 14 (from the left-hand side) b§'(ev) and
integrating over the electronic coordinates, we obtain, in a
similar way, as within the TID framework, the (adiabatic)
nuclear TD-SE:

2
s Ko o

ih ot 2m(V +7)y+Hwy (15)
wherer, introduced in eq 1, is @D matrix, butH is the TD
potential matrix defined as

Baer
He(tlv)y = @;(elv)H(eltw) & (elv)D

It is important to mention thaie, for t < 0 is a diagonal matrix
which is identical to the adiabatic potential matmintroduced
in eq 3 but becomes nondiagonaltat 0.

The next step is to perform the ADT in order to eliminate
ther matrix which is done in a similar way as within the TID
framework!! namely replacing® by A®, (see eq 7) and
performing the usual algebra (see, also, egsl®. This
derivation yields the following TD nuclear SE:

(16)

h2

> _ K
h__ 2m

Ve + W D (17)

where the diabatic potentidV. is similar toW in eq 9 but

defined with respect tél, given in eq 16:
w,=AHA (18)

andA is the solution of eq 10. Since the electronic basis set is

TID the same applies to thematrix as well as to th& matrix

so that the time dependence of the diabatic potevitigfollows,

solely, fromHe.

At this stage we want to call attention to the following
difficulty. It is noticed that the number of coupled (nuclear)
SEs to be solved is equal to the number of electronic eigenstates,
designated a&, employed in the derivation dfie. However
this number has to equd|, the size of the Hilbert subspace,
because otherwise, based on numerous studiestjvalued
diabatic potentials are encountefett® Thus,L is forced to be
equal toN. However if the perturbation is too strong so tivat
states may not suffice to present it properly, this procedure is
expected to fail (this is also why we termed this approach
perturbative).

To summarize this section: The perturbative approach may
not be robust because the dimension of the Hilbert subspace
dictates the dimension of the perturbation.

IV. The Time-Dependent Nonperturbative Approach

IV.1. Introductory Comments. The starting point is, like

in the previous section, the TESE for the total wave function,
qj:20,22a,b

LW [ R, )

ih ot —( 2mV +H,|W (11)
andW is presented, as usual, in the following form:

W(elty) = ¢ (eltv)y(ty) 19)

(we recall thatZ™, as in the previous section, is a row vector
corresponding td;). The number of (time-dependent) eigen-
functions included in the expansion N which, as was
emphasized in the previous section, is equal to the size of the
Hilbert subspace. In what follows we assume thatd{est,v)
functions fulfill the following TD equation, namely:
Lol (elty) _ o
ih—=— = = LT (elty)H(elty) (20)
Substituting eqgs 19 and 20 into eq 11 yields the following TD
equation for the nuclear wave functiotfé:?
aw(e| Vv _ W

he (elty) =5 = = 2=V @ty (ety) (21)
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As can be noticed, this equation is entirely dominated by the
kinetic operator.

IV.2. The Time-Dependent Equation for the Electronic
Components.Our next step is to write eq 20 in a more explicit
way. In what follows, we are allowed, without losing the
generality, to assume that each electronic “adiabatic” wave
function fulfills the following TD equatiorf2ab

0| (elt,y]
ih% = H & eltyD

(22)
Equation 22 is solved for the initial function which is identified
with the kth electronic eigenfunction oHe att = O, i.e.,
|Ck(elt = 0,v)[F-as given in eq 2. To solve eq 22 each of the
TD |Zk(€elt,v)(Functions is expanded in terms bkigenfunctions
of He as calculated at= 0. Thus

L
|Cu(elty) = ZIC,—(elt = 0)ldy(tlv) (23)
=

Since the number oftk(et,v)Ofunctions isN (which is the

size of the Hilbert subspace) which is not necessarily equal to

L—in what followsN < L—it is noticed that then(t|v) matrix
can be a rectangular (not square) matrix Witicolumns and-
rows, thus, of dimensionksx N.

Substituting eq 23 into eq 22 yields the differential equation
for o(t|v):

do(tlv)

ik prramh

He(th)o(tlv) (24)

where:
H(t/v), = @&;(elt = 0w)|H (eltw)| S (elt = 0p)0 (25)

The solution of eq 24 is given in the form:

o(ty) =p exp{— fll At e T (26)

wherep is now the time ordering operator (see also ref 11b)
and I is a rectangular matrix with the elements and
dimensions identical to those i(t|v), i.e.,LxN. It can be seen
that att = 0 the matrixe(t = 0Jv) is equal tol.

As a final subject in this subsection we emphasize that
althougha(t|v) is not a square matrix, it is a unitary matrix in
the sense that

o't oty) =1 (27)

whereo'(t|v) is of dimensiorNx L and is the (right-hand-side)
complex conjugate ofw(tjv) and | is the unit matrix of
dimensionNxN.

As is noticed, the present derivation (in contrast to the

previous, perturbative, one) does not require the size of the

employed TID basis selL, to be identical ta\, the size of the
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Multiplying eq 28 (from the left side) bg'(e|t,v) and integrating
over the electronic coordinates, we obtain (see Appendix I)

w— _H o e
ih p 2m(V + 7)Y (29)
where7 is a TD, dressednonadiabatic coupling matrix given
in the form:

f=o'to+ o' Vo (30)
It is well noticed that althougk(t|v) is a rectangular matrix;
is a square matrix of dimensiomMxN and therfore the size of
the system of SEs in eq 29 remaiNgand notL).

Equation 29 stands for the general adiabatic time-dependent
nuclear SE. It is of an unusual interesting form because it is
expressed in terms of (dressed) NACTs only and lacks the
expected PES matrix. A similar form was encountered in a
simplified version of the present treatm&atvhen we attached
to the electronic eigenfunctions time-dependent phases worked
out, originally, earlieg3

Equation 29 will be diabatized in the next section.

IV.4. The Time-Dependent Adiabatic-to-Diabatic Trans-
formation. We apply again the ADT as presented in eq 7 but
to distinguish this case from the previous one we labeldd it
Substituting eq 7 into eq 29 yields the following expression:

YL S X 25\t i OA
KA = — 5 {AVZ+ 2GA)V + (G°A)| @ — ik
(31)

HereG is an operator which acts only édhand is given in the
form:
G=V+71 (32)

To continue we add and subtract an undetermined ma&trix
multiplied by A®, so that eq 31 becomes

N
ihA ot

2
- S—m[sz + 2(GA)V + (G?A)|® — (F — B)A® (33)
whereF is an operator which acts ok only and is defined as

_ g0
F=ih +B (34)

The A matrix is chosen to be a simultaneous solution of the
two following equations:

GA=0 (35a)
and

FA=0 (35h)

Hilbert subspace. This is an important feature because theThe derivation of this matrix follows by demanding that the
perturbation can now be of any magnitude and still be treated elements of the solution matrix of eq 35, once derived, have to

reliably without significantly increasing the numerical effort (as
will be shown next).

IV.3. The Adiabatic Time-Dependent Equation for the
Nuclear Wave Functions.Returning to eq 21 and evaluating
the right-hand side, one obtains the following:

n W =~ M roy 4 29Ty + (P (29

be analytic functions at every point in a given “four-
dimensional” configuration timespace. This means that each
element of theA matrix has to be differentiable to any order
with respect to all the spatial coordinates and with respect to
time. In addition, analyticity requires the fulfillment of the
following two conditions:
(1) The results of two consecutive differentiations of fhe

matrix with respect to two spatial coordinates, p and g, does
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not depend on the order of differentiatihThis requirement
can be shown to lead to Curl conditions similar to those given
in eq 5 (or 6) but where is replaced by its TD counterpait,
(see eq 30).

(2) The results of two consecutive differentiations of e
matrix, one with respect ttme and the other with respect to
any spatial coordinat@, does not depend on the order of
differentiation. This requirement implies

%(vA) - V(%A) =0 (36)

In Appendix Il, is proved that the condition for this equality to
hold is that theB matrix (introduced earlier, in eqs 33 and 34,
but not yet determined) has to be

B=H,=o'Hwo (37)
Having this result, we find for eq 35:
VA+7A=0
ih% +7A=0 (38)

which can be written in terms of a “four”-component vector:
22a,b

VA+7A=0 (39)

whereV is a “four’-component grad operator (reminiscent of
special relativity)3122ab,24,.25

~ J0 0 d .. 0
V={——, .. —ih=
{ 9q, 909, aq, 8’[}

and, similarly,% is recognized as a “four"-component vector
matrix:

(40)

|

= {By s - B H ) (41)

Herelf|e is the time component & It is important to mention

Baer

W,=AHA (44)
The potential matrixV. is similar, in some respect, W in

eq 18 because at time< 0, both He and H, are diagonal

matrices that contain the adiabatic potentials. Howevér>at

0, He andH, become nondiagonal and in general differ from

each other so that the same applies\tg and We.

V. Discussion and Conclusions

In this article are presented two different diabatization
schemes for a molecular system perturbed by a time-dependent
perturbation. We termed the first, the simplified version, as the
perturbative approach and the second, the more general one, as
the nonperturbative approach. In both treatments we end up with
a unitary ADT matrix (reminiscent of the one encountered in
the TID framework) calculated by solving a vectorial first-order
differential equation along contours.

The main difference between the two approaches is: Within
the first approach aime-independerglectronic basis set is used
so that the ADT matrix is TID and the resulting diabatic PES
matrix is similar to the one encountered for a TID interaction.
Within the second approach we applytime-dependenglec-
tronic basis set so that we end up with a TD-ADT matrix which
leads to a somewhat more complicated diabatic PES matrix.

There is no doubt that on the face of it the first approach,
due to its simplified ADT, should be preferred. However this
version may have its disadvantages due to two contradictory
requirements: (1) To have a correct ADT matrix, one has to
apply a Hilbert subspace which contaMstates (which results
in a system ofN nuclear SEs to be solved). (2) Given a TD
interaction one may nedd (TID) electronic eigenfunctions to
present it reliably (wheré& can be larger thail). Within the
first approachL has to be equal tt\ even though a set dfl
(=L) electronic eigenfunctions may not be sufficient to present
satisfactorily the TD perturbation. Within the second approach
the two number® andL areindependentamely, the number
of SEs to be solved is, as befoi, but this approach allows to
apply a (much) larger electronic basis set to represent the
perturbation. It is true that within this process one encounters
rectangular (as opposed to square) matrices, but the theory, as

that in our case we do not necessarily have “four” components presented here, overcomes this obstacle in a reliable, coherent

but in general K + 1) components.
The corresponding “four’-component non-Abelian Curl equa-

and consistent way. Thus, the final outcome is a sét @fiot
L) nuclear SEs just like in the previous case and the inconve-

tion which guarantees the existence of a solution for eq 39 takespjence as encountered within the second approach is mainly in

the form
05 % —[351=0 {uu =pat(ih)} (42)
w e aun whu ' k o

wherep and q are spatial coordinates arig stands for the

time component of, namely,H,. Equation 42 is reminiscent
of the “four-component” Yang-Mills non-Abelian Curl equa-
tion?* We would like also to mention that Englman and

constructing the diabatic potential matrix but not in solving the
nuclear SEs.
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author’'s spatial Curl equation to include the relevant time
componerit similar to eq 42. )
It can be shown that the solution of eq 38, namely, Ahe

matrix is a unitary matrix and as a result the diabatic SE (see

eq 33) takes the simplified form
L 0D
L _(

whereW, is the “missing” potential matrix:

2
L We)d)

2m (43)

Appendix |. Derivation of 7, the Dressed Nonadiabatic
Coupling Matrix

Our starting point is eq 28:
. 3 h?
IR (elt )5 = — 2T (elt) Vi + 29 (elty) Vi +

(V" (eltm)y} (1.1)
Employing eq 23 to preseidf (e|t,y) we get
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iheT (et = o,v)m(tw)%’{l - %{ £ (elt = 0)eo(t]v) Vap +

2V(ET(elt = 0p)oo(t|v))- Vp + V(' (elt = 0p)oo(t]v))y}
(1.2)

Multiplying eq 1.2 each time by one of th&(elt = 0)O
functions,k = 1, ...,L, and integrating the result with respect
to e, the electronic coordinates, and multiplying through by
o'(t|v) yield the following outcome:
2
ih%’/ti =— ;‘—m{vzzp + 20'(ro + Vo)V +
o'(MPo + 20V + Vo)y} (1.3)

where o replacesw(t|v), T is TID, namely,r = 7(v) andz®
(which is also TID) stands for

@ =T (et= 01|V (elt=0,0  (1.4)

Recalling that for a Hilbert subspace the following relation
holdsi9

@ =vr+7 (1.5)

we get for eq 1.3 the following result:

S0P h? +
IhE— —%{V Y+ 20 (to + Vo) Vy +

o'(T°o + Vo + 2r-Vo + V’o)y} (1.6)
Next we consider eq 29 and evaluate the following squared
expression:

ih%‘atQ = - %{V%p +28- Vy + (VE+ Py} (17)

Recalling eq 30, it is noticed that the two first terms on the rhs
in egs 1.6 and 1.7 are identical, and in order to complete the
proof for the derivation of eq 28, we still have to prove the
following identity:

Vi + 7 = 0'(Fo + Vio + 2r-Vo + Vo) (1.8)

For this purpose wassumehat indeed is correctly presented
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It is important to emphasize that this derivation is valid
immaterial ifw is a square or a rectangular matrix.

Appendix Il. On the Analyticity of the A Matrix in
Configuration Time —Space

In the present appendix we intend to derive the malix
(introduced in egs 33 and 34) that will yield an analyiicnatrix
in the time-space configuration which (besides being dif-
ferentiable with respect to all coordinates) has to satisfy the
following condition (see eq 36):

ihaﬁt(w&) - V(iha%,&) =0 (1.1)

From eq 35, we can see thAthas to fulfill two first-order
differential equations:

VA +%A =0

ih% +BA=0 (11.2)

Activating the grad operator on the second equation in eq
1.2, differentiating the first with respect to(and multiplying
it by (ih)), subtracting the second from the first, and assuming
eq I.1, we obtain the following expression that has to be fulfilled:

ihZA + #h?2 — (VB)JA —BVA=0  (I.3)
ot ot
Substituting eq 1.2 for the relevant terms in eq 11.3 yields
ihor — 78 — VB + BEJA = 0

or sinceA can be shown to be regular (in fact, even, unitary)
we also have

ih%—f—%B—VBJrBi:o (11.4)

Recalling eq 30, we evaluate the first term in eq 1.4, namely

do' t [0
= Vw+wv(8t) (11.5)

i _ o

o . 1,00
ot ot

+
(0] (l)‘L'at

where we remember that by definition thenatrix is TID. To

in eq 30 and, accordingly, we evaluate the lhs of eq 1.8 in terms continue, we recall eq 24 and replace, accordingly, the various

of 7 to verify this assumption:

Vi+#= V(w*w) + wTVw) +
(0o + 0'Vo)(o'to + o'Ve) (1.9)

It is seen that the main obstacle for the expressions of the rhs

of egs 1.8 and 1.9 to become equal is the fact that in eq .9 we
encounter terms that contaih @' which is missing on the rhs

of eq 1.8. To overcome this difficulty we activate the grad
operator on eq 27:

V(o'ow) = (Voo + o'Vo =0 (1.20)
which allows one to expresgon' as follows:
Vo' = - o'(Vo)o' (1.11)

Evaluating the first term on the rhs in eq 1.9 and substituting
eq .11 in the relevant expressions, finally, yields the verification
for eq 30.

time derivatives so that we get:
L 0T

ih—

ot

o'Ago+ o'tH o+ o'(VA)o (11.5)

The next step is to evalua®(m'Hem) while incorporating the
fact that
Vo'=— a)T(Va))wT (11.6)

As a result one obtains:
V(oA ) = — o'(Vo)o'H .o+ o' (VA o + oA Vo

This expression is used to replace, in eq'Jl.te term

o'(VHem. Therefore, eq 11.5becomes

L 0T

ih—
ot

- o'Hgo+ o'tH o+ que + o'(Vo)o'H o —

oA yvo (11.7)
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To continue, we first introduce a new definition, i.gle:

(1.8)

Baer

(9) Born, M.; Oppenheimer, J. RAnn. Phys.(Leipzigl927, 84, 457.
Born, M.; Huang, K.Dynamical theory of Crystal LatticesOxford
University; New York, 1954.

(10) Lichten, W.Phys. Re. 1967 164, 131. Smith, F. TPhys. Re.
1967 179, 112.
(11) (a) Baer, M.Chem. Phys. Lettl975 35, 112. (b) Baer, MMol.

and secondly, we substitute eqs 11.7 and 11.8 into eq 1.4 so that phys.198Q 40, 1011.

following a few algebraic manipulations we get
~HF+#,+ VA, —# - VB+BF=0 (I.9)

It is well noticed that this expression becomes identically zero
assumingB = H.
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