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In this article atime-dependentmolecular system is considered. The theoretical treatment is characterized by
the fact that here, for the first time, the adiabatic framework is assumed to contain singular nonadiabatic
coupling terms or, in other words,conical intersections. The aim is to derive under these conditions, from
first principles and in a rigorous manner, the time-dependent nuclear Schroedinger equations to be solved.
We arrived at two different versions: (1) the “ordinary” version, which is essentially similar to the one
encountered within the time-independent scheme and demands the fulfillment of the spatial Curl condition
(Baer, M. Chem. Phys. Lett.1975, 35, 112), and (2) a novel version, which introduces the time-space
configuration and consequently demands the fulfillment of a “four”-component Curl condition, reminiscent
of the one in special relativity (R. Baer, M. Baer, D. K. Hoffman, and D. J. Kouri, to be published). Both
versions lead to the same number of Schroedinger equations, but within the second version, the time-dependent
interaction is treated much more reliably.

I. Introduction

As more and more groups show interest in treating molecular
interactions which involve electronic transitions,1 I thought it
would be useful to discuss some difficulties in treating such
processes and present theoretical ways to handle them. There
is no doubt that treating molecular interactions affected by
electronic nonadiabatic coupling terms (NACT) is much more
complicated than treating interactions where these effects are
ignored. The main reason is that NACTs are frequently singular,2

and this is believed to introduce insurmountable numerical
difficulties. Scanning through the published literature, one will
notice that in many cases the NACTs are not as seriously
considered as they should be. In contrast to the familiar vib-
rotational coupling terms which are well understood and usually
handled correctly, the NACTs are kinds of physical magnitudes
which in most cases are either ignored or circumvented without
proper justifications. If ignored, not much can be added except
to say that the results have to be considered unreliable and
eventually nonrelevant. More serious difficulties are encountered
with treatments that circumvent the need to consider NACTs
and give the inexperienced user the impression that these
treatments are well established and numerically sound. As it
turns out it is impossible to circumvent the NACTs because in
treating electronic transitions one hasto knowthe size of the
Hilbert subspace (namely the number of strongly coupled
eigenstates) in the region of interest, and this can be obtained
only by studying the NACTs.3,4 This statement may be more
confusing than enlightening but we elaborate on this subject in
the next two paragraphs. A NACT is a vector characterized by
two features: it has its origin in a degeneracy point (i.e., where
two electronic eigenstates become identical),2 known also as a
conical intersection (ci)5 and it has a spatial distribution which
decreases likeq-1 whereq is a the distance from theci.6 Conical
intersections are well-established concepts in solid-state phys-

ics7,8 but were shown to play a dominant role in molecular
dynamics as well.1-4

The starting point of any study of electronic effects in
molecular systems is the Born-Oppenheimer (BO) assumption
that electrons are moving much faster than nuclei and therefore,
theoretically, one can treat first the dynamics of the electrons
and then consider the motion of the nuclei.9 To continue, one
may choose either the adiabatic framework which consists of
the adiabatic potential energy surfaces (PES) and the NACTs,
or the diabatic framework which is expressed in terms of the
diabatic potential matrix. Since the elements of the diabatic PES
matrix are smooth functions of the coordinates (and NACTs
are usually not) the diabatic framework is preferred for treating
the nuclear dynamics of the nuclei and indeed all rigorous
quantum mechanical treatments aim at reaching it.1,10-12 The
diabatic framework can be formed in three ways: (1)The first
is the direct way, namely, deriving an electronic basis set as
well as a set of eigenvalues calculated at a given (one, single)
point in configuration space and applying them to calculate the
diabatic potential matrix at any requested point (see, for instance,
ref 4a, Appendix D); (2) The second is theindirectway, namely,
deriving for eachpoint in configuration space the electronic
eigenvalues (which are recognized as the adiabatic potentials)
and the electronic eigenfunctions needed to calculate the NACTs
and, then, employing these NACTs, to form the transformation
to the diabatic framework.11 This transformation is termed as
the adiabatic-to-diabatic transformation, or by its acronym ADT,
and as was discussed on many other occasions the ADT yields
a meaningful diabatic potential matrix if and only if certain
conditions (to be discussed below) are fulfilled. (3) There is
also a third way which is similar to the previous one as it is
based on an ADT matrix, but the relevant matrix elements are
notcalculatedfromtheNACTsbutemployingotherconsiderations.1c,d,e,12

It is important to mention that there are other approaches,
nonrigorous, which differ significantly from the ones just
mentioned. Such are the quasi-classical,13 semiclassical,14 mixed
electronic-nuclear quantum-classical15 and nuclear quantum-† E-mail of corresponding author: michaelb@fh.huji.ac.il.
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classical approaches.16 These approaches are usually approxi-
mate and are mainly designed to treat larger molecular systems
which are beyond the capability of the pure quantum methods.
In the present article, we consider the rigorous quantum
mechanical methods only.

There is no doubt that on the face of it thedirect way of
reaching the diabatic framework is more convenient. Indeed,
as long as the various NACTs are regular functions at every
point in configuration space (or at least in that part of interest)
this procedure is valid and simple. However, in case certain
NACTs become singular, as for instance in the case of the H+
H2 system,17,18this procedure is most likely to fail and therefore
is expected to yield irrelevant results. To find out if such singular
NACTs exist one has to “move” into the adiabatic framework
and calculate them for a highly dense grid of points which, in
turn, makes this procedure (i.e., thedirect one) essentially
redundant. Another difficulty associated with thedirectapproach
has to do with the size of the required group of states that has
to be included in the calculations (which is equivalent to the
smallest number ofadiabatic states which can be considered
as beingisolatedfrom the rest of the Hilbert spaces see the
detailed discussion on this subject in ref 19). We showed in
numerous articles that dynamic calculations are meaningless
unless they are carried out forsucha Hilbert subspace but the
size of this Hilbert subspace (in a given region) can be obtained
only by employing the NACTs. The reason for this is associated
with the ability to formsingle-Valueddiabatic potentials. Such
potentials are guaranteed if and only if the Hilbert subspace is
not coupled (or, at most, weakly coupled) to the rest of the
Hilbert space.3,4,19To find out whether a given Hilbert subspace
forms an isolated group of states we need the relevant NACT
matrix of the same size (i.e., dimension). In summary, whatever
approach one uses to treat the nuclear system a detailed study
of the NACTs is required first. Thus, in order to carryout a
reliable dynamical treatment of a molecular system (e.g.,
scattering processes, photodissociation, unimolecular processes),
the adiabatic framework can never be circumvented. In other
words any diabatization process has to be started in the adiabatic
framework and the diabatic framework is best reached applying
the ADT matrix. In what follows, whenever we mention a
Hilbert subspace we refer to anisolatedgroup of states.

The subject to be treated in the present article is related to
the diabatization to be carried out for a BO system exposed to
an external time-dependent (TD) electric field.20 We assume
an electric field and not an electromagnetic field in order to
avoid the electromagnetic vector potential, which, for our
purpose unnecessarily complicates the theoretical derivations.
We discuss two procedures: (a) the perturbative approach which
can be considered as the traditional approach; (b) the nonper-
turbative approach which introduces novel ideas such as a
“four”-component curl equation (“four” in the sense of field
theory or special theory of relativity). This particular issue was
addressed in a review article by Englman and Yahalom,21

whereas the more general aspect is discussed in two more recent
articles.22

The two procedures yield different expressions (but the same
number of nuclear equations) for the final diabatic (nuclear)
TD Schrödinger equations (SE) to be solved. Following the
theoretical presentation, we discuss to some extent the advan-
tages and disadvantages of each approach.

The article is arranged in the following way: In the next
section we briefly summarize the theoretical background related
to the present subject (essentially summarizing the theory for
the time-independent framework), in the third section is

presented the perturbative approach for treating the TD-BO
equation, in the fourth the nonperturbative approach is discussed,
and in the last section the conclusions are discussed and
summarized.

II. Theoretical Background: The Time-Independent
System

The nonadiabatic coupling matrix element,τji, the central
magnitude of this article, is defined as

where the grad operator is expressed with respect to the nuclear
coordinates,ν, and the úk(e|ν) functions, k ) j,i, are the
eigenfunctions of the time-independent (TID) electronic Hamil-
tonianHe(e|ν):

Here,e stands for the electronic coordinates anduk(ν) is the
kth (adiabatic) PES. The NACTs become apparent, at a
somewhat later stage, following the BO treatment which leads
to the nuclear SE. Assuming we encounter the situation of a
Hilbert subspace (as briefly defined in the Introduction) the
nuclear SE becomes:3c

whereτ is an antisymmetric matrix which contains the NACTs
defined in eq 1,u is a diagonal matrix that contains the nuclear
PESs (introduced through eq 2),Ψ is a column vector that
contains the nuclear wave functions to be solved,E is the energy,
and m is the mass of the system (it is assume that the grad
operator is defined with respect to mass-scaled coordinates).

The τ matrix is characterized by two important features:
(1) Some of its elements can become singular. The singularity

follows from the Hellmann-Feynman theorem which also yields
an explicit expression for each matrix elementτji:2

Hereuk, k ) j,i are the corresponding eigenvalues defined in
eq 2. It is well noticed that when theith and thejth eigenvalues
become degenerate the correspondingτ matrix element, i.e.,τji

becomes singular. This is expected, when it happens, between
two consecutive states, namely the jth and the (j+1)th one.

(2) The components of theτ matrix fulfill (in the case of a
Hilbert subspace) the following set of equations:11

whereq andp are any of theK components ofτ (K is equal to
the number of internal nuclear coordinates). This set can be
written also in a more compact way:

Equation 5 (or eq 6) is sometimes called the Curl condition or
also the Curl equation.

The next subject is related to the adiabatic-to-diabatic
transformation. Again we just scan through the main expres-
sions. The aim of the diabatization is to eliminate the unpleasant
singular NACTs from eq 3, and for this purpose, we perform

τji ) 〈új|∇úi〉; i,j ) { 1, ...} (1)

(He(e|ν) - uk(ν))úk(e|ν) ) 0; k ) j,i (2)

- p2

2m
(∇ + τ)2Ψ + (u - E)Ψ ) 0 (3)

τji )
〈új|∇He|úi〉

uj - ui
(4)

∂

∂p
τq - ∂

∂q
τp - [τq,τp] ) 0; { p,q;K} (5)

Curlτ - [τ × τ] ) 0 (6)
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the following transformation:11

Substituting eq 7 into eq 3, performing the usual algebra, and
demanding the elimination of theτ matrix yields the following
results:

(a) The new (diabatic) SE is

where the diabatic potentialW is given in the following form:

(b) The ADT matrix,A, which is a solution of the first-order
differential equation, is9

Equation 10 is solved along contours,Γ.11

As a final point in this section we mention that fulfillment
of the Curl equation (eqs 5 or 6) in a given region is a sufficient
condition for eq 10 to have a solution in that region. More about
this subject can be found in ref 4.

III. The Time-Dependent Perturbative Approach

The starting point is the TD-SE for the total wave function,
Ψ, of the electrons and the nuclei:20,22b

where the electronic Hamiltonian,He, is time dependent fort
g 0, i.e.,He ) He(t). Following Born and Oppenheimer,Ψ is
presented in the following form:

(hereúT(e|ν) is a row vector, in contrast toú(e|ν) which is a
column vector) and we assume thatú(e|ν) is a TID basis set
which fulfills eq 2, but only for te 0. Substituting eq 12 into
eq 11 yields the following TD equation for the nuclear wave
functions:

or

Multiplying eq 14 (from the left-hand side) byú†(e|ν) and
integrating over the electronic coordinates, we obtain, in a
similar way, as within the TID framework, the (adiabatic)
nuclear TD-SE:

whereτ, introduced in eq 1, is aTID matrix, butH̃e is the TD
potential matrix defined as

It is important to mention thatH̃e, for t e 0 is a diagonal matrix
which is identical to the adiabatic potential matrixu introduced
in eq 3 but becomes nondiagonal att > 0.

The next step is to perform the ADT in order to eliminate
the τ matrix which is done in a similar way as within the TID
framework,11 namely replacingΨ by AΦ, (see eq 7) and
performing the usual algebra (see, also, eqs 8-10). This
derivation yields the following TD nuclear SE:

where the diabatic potentialWe is similar to W in eq 9 but
defined with respect toH̃e, given in eq 16:

andA is the solution of eq 10. Since the electronic basis set is
TID the same applies to theτ matrix as well as to theA matrix
so that the time dependence of the diabatic potentialWe follows,
solely, fromH̃e.

At this stage we want to call attention to the following
difficulty. It is noticed that the number of coupled (nuclear)
SEs to be solved is equal to the number of electronic eigenstates,
designated asL, employed in the derivation ofH̃e. However
this number has to equalN, the size of the Hilbert subspace,
because otherwise, based on numerous studies,multiValued
diabatic potentials are encountered.3,4,19Thus,L is forced to be
equal toN. However if the perturbation is too strong so thatN
states may not suffice to present it properly, this procedure is
expected to fail (this is also why we termed this approach
perturbatiVe).

To summarize this section: The perturbative approach may
not be robust because the dimension of the Hilbert subspace
dictates the dimension of the perturbation.

IV. The Time-Dependent Nonperturbative Approach

IV.1. Introductory Comments. The starting point is, like
in the previous section, the TD-SE for the total wave function,
Ψ:20,22a,b

andΨ is presented, as usual, in the following form:

(we recall thatúT, as in the previous section, is a row vector
corresponding toú). The number of (time-dependent) eigen-
functions included in the expansion isN which, as was
emphasized in the previous section, is equal to the size of the
Hilbert subspace. In what follows we assume that theú(e|t,ν)
functions fulfill the following TD equation, namely:

Substituting eqs 19 and 20 into eq 11 yields the following TD
equation for the nuclear wave functions:22a,b

Ψ ) AΦ (7)

- p2

2m
∇2Φ + (W - E)Φ ) 0 (8)

W ) A†uA (9)

∇A + τA ) 0 (10)

ip
∂Ψ
∂t

) (- p2

2m
∇2 + He)Ψ (11)

Ψ(e|t,ν) ) úT(e|ν)ψ(t,ν) (12)

ipúT∂ψ
∂t

) - p2

2m
∇2(úTψ) + He(ú

Tψ) (13)

ipúT∂ψ
∂t

)

- p2

2m
{úT∇2ψ + 2∇úT∇ψ + (∇2úT)ψ} + (Heú

T)ψ (14)

ip
∂ψ
∂t

) - p2

2m
(∇ + τ)2ψ + H̃eψ (15)

H̃e(t|ν)jk ) 〈új(e|ν)|He(e|t,ν)|úk(e|ν)〉 (16)

ip
∂Φ
∂t

) - p2

2m
∇2Φ + WeΦ (17)

We ) A†H̃eA (18)

ip
∂Ψ
∂t

) ( - p2

2m
∇2 + He)Ψ (11)

Ψ(e|t,ν) ) úT(e|t,ν)ψ(t,ν) (19)

ip
∂úT(e|t,ν)

∂t
) úT(e|t,ν)He(e|t,ν) (20)

ipúT(e|t,ν)
∂ψ(e|t,ν)

∂t
) - p2

2m
∇2(úT(e|t,ν)ψ(e|t,ν)) (21)
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As can be noticed, this equation is entirely dominated by the
kinetic operator.

IV.2. The Time-Dependent Equation for the Electronic
Components.Our next step is to write eq 20 in a more explicit
way. In what follows, we are allowed, without losing the
generality, to assume that each electronic “adiabatic” wave
function fulfills the following TD equation:22a,b

Equation 22 is solved for the initial function which is identified
with the kth electronic eigenfunction ofHe at t ) 0, i.e.,
|úk(e|t ) 0,ν)〉sas given in eq 2. To solve eq 22 each of the
TD |úk(e|t,ν)〉 functions is expanded in terms ofL eigenfunctions
of He as calculated att ) 0. Thus

Since the number of|úk(e|t,ν)〉 functions isN (which is the
size of the Hilbert subspace) which is not necessarily equal to
Lsin what followsN e Lsit is noticed that theω(t|ν) matrix
can be a rectangular (not square) matrix withN columns andL
rows, thus, of dimensionsL×N.

Substituting eq 23 into eq 22 yields the differential equation
for ω(t|ν):

where:

The solution of eq 24 is given in the form:

whereF is now the time ordering operator (see also ref 11b)
and Ĩ is a rectangular matrix with the elementsδjk and
dimensions identical to those inω(t|ν), i.e.,L×N. It can be seen
that att ) 0 the matrixω(t ) 0|ν) is equal toĨ .

As a final subject in this subsection we emphasize that
althoughω(t|ν) is not a square matrix, it is a unitary matrix in
the sense that

whereω†(t|ν) is of dimensionN×L and is the (right-hand-side)
complex conjugate ofω(t|ν) and I is the unit matrix of
dimensionN×N.

As is noticed, the present derivation (in contrast to the
previous, perturbative, one) does not require the size of the
employed TID basis set,L, to be identical toN, the size of the
Hilbert subspace. This is an important feature because the
perturbation can now be of any magnitude and still be treated
reliably without significantly increasing the numerical effort (as
will be shown next).

IV.3. The Adiabatic Time-Dependent Equation for the
Nuclear Wave Functions.Returning to eq 21 and evaluating
the right-hand side, one obtains the following:

Multiplying eq 28 (from the left side) byú†(e|t,ν) and integrating
over the electronic coordinates, we obtain (see Appendix I)22

whereτ̃ is a TD,dressed, nonadiabatic coupling matrix given
in the form:

It is well noticed that althoughω(t|ν) is a rectangular matrix,τ̃
is a square matrix of dimensionsN×N and therfore the size of
the system of SEs in eq 29 remainsN (and notL).

Equation 29 stands for the general adiabatic time-dependent
nuclear SE. It is of an unusual interesting form because it is
expressed in terms of (dressed) NACTs only and lacks the
expected PES matrix. A similar form was encountered in a
simplified version of the present treatment22c when we attached
to the electronic eigenfunctions time-dependent phases worked
out, originally, earlier.23

Equation 29 will be diabatized in the next section.
IV.4. The Time-Dependent Adiabatic-to-Diabatic Trans-

formation. We apply again the ADT as presented in eq 7 but
to distinguish this case from the previous one we labeled itÃ.
Substituting eq 7 into eq 29 yields the following expression:

HereG is an operator which acts only onÃ and is given in the
form:

To continue we add and subtract an undetermined matrixB
multiplied by ÃΦ, so that eq 31 becomes

whereF is an operator which acts onÃ only and is defined as

The Ã matrix is chosen to be a simultaneous solution of the
two following equations:

and

The derivation of this matrix follows by demanding that the
elements of the solution matrix of eq 35, once derived, have to
be analytic functions at every point in a given “four-
dimensional” configuration time-space. This means that each
element of theÃ matrix has to be differentiable to any order
with respect to all the spatial coordinates and with respect to
time. In addition, analyticity requires the fulfillment of the
following two conditions:

(1) The results of two consecutive differentiations of theÃ
matrix with respect to two spatial coordinates, p and q, does

ip
∂|úk(e|t,ν〉

∂t
) He|úk(e|t,ν〉 (22)

|úk(e|t,ν)〉 ) ∑
j)1

L

|új(e|t ) 0,ν)〉ωjk(t|ν) (23)

ip
∂ω(t|ν)

∂t
) H̃e(t|ν)ω(t|ν) (24)

H̃e(t|ν)jk ) 〈új(e|t ) 0,ν)|He(e|t,ν)|úk(e|t ) 0,ν)〉 (25)

ω(t|ν) )F exp(- i
p
∫0

t
H̃e(t′|ν)dt′)Ĩ (26)

ω†(t|ν)ω(t|ν) ) I (27)

ipúT∂ψ
∂t

) - p2

2m
{úT∇2ψ + 2∇úT∇ψ + (∇2úT)ψ} (28)

ip
∂ψ
∂t

) - p2

2m
(∇ + τ̃)2ψ (29)

τ̃ ) ω†τω + ω†∇ω (30)

ipÃ
∂Φ
∂t

) - p2

2m
[Ã∇2 + 2(GÃ)∇ + (G2Ã)]Φ - ip

∂Ã
∂t

Φ

(31)

G ) ∇ + τ̃ (32)

ipÃ
∂Φ
∂t

)

- p2

2m
[Ã∇2 + 2(GÃ)∇ + (G2Ã)]Φ - (F - B)ÃΦ (33)

F ) ip
∂

∂t
+ B (34)

G Ã ) 0 (35a)

F Ã ) 0 (35b)
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not depend on the order of differentiation.11 This requirement
can be shown to lead to Curl conditions similar to those given
in eq 5 (or 6) but whereτ is replaced by its TD counterpart,τ̃
(see eq 30).

(2) The results of two consecutive differentiations of theÃ
matrix, one with respect totime and the other with respect to
any spatial coordinatep, does not depend on the order of
differentiation. This requirement implies

In Appendix II, is proved that the condition for this equality to
hold is that theB matrix (introduced earlier, in eqs 33 and 34,
but not yet determined) has to be

Having this result, we find for eq 35:

which can be written in terms of a “four”-component vector:
22a,b

where∇̃ is a “four”-component grad operator (reminiscent of
special relativity):21,22a,b,24,25

and, similarly, τ̃̃ is recognized as a “four”-component vector
matrix:

HereH̃̃e is the time component ofτ̃̃. It is important to mention
that in our case we do not necessarily have “four” components
but in general (K + 1) components.

The corresponding “four”-component non-Abelian Curl equa-
tion which guarantees the existence of a solution for eq 39 takes
the form

where p and q are spatial coordinates andτ̃̃t, stands for the
time component ofτ̃̃, namely,H̃̃e. Equation 42 is reminiscent
of the “four-component” Yang-Mills non-Abelian Curl equa-
tion.24 We would like also to mention that Englman and
Yahalom briefly discussed the possibility to extend the present
author’s spatial Curl equation to include the relevant time
component21 similar to eq 42.

It can be shown that the solution of eq 38, namely, theÃ
matrix is a unitary matrix and as a result the diabatic SE (see
eq 33) takes the simplified form

whereW̃e is the “missing” potential matrix:

The potential matrixW̃e is similar, in some respect, toWe in
eq 18 because at timet e 0, both H̃e and H̃̃e are diagonal
matrices that contain the adiabatic potentials. However att >
0, H̃e and H̃̃e become nondiagonal and in general differ from
each other so that the same applies toWe andW̃e.

V. Discussion and Conclusions

In this article are presented two different diabatization
schemes for a molecular system perturbed by a time-dependent
perturbation. We termed the first, the simplified version, as the
perturbative approach and the second, the more general one, as
the nonperturbative approach. In both treatments we end up with
a unitary ADT matrix (reminiscent of the one encountered in
the TID framework) calculated by solving a vectorial first-order
differential equation along contours.

The main difference between the two approaches is: Within
the first approach atime-independentelectronic basis set is used
so that the ADT matrix is TID and the resulting diabatic PES
matrix is similar to the one encountered for a TID interaction.
Within the second approach we apply atime-dependentelec-
tronic basis set so that we end up with a TD-ADT matrix which
leads to a somewhat more complicated diabatic PES matrix.

There is no doubt that on the face of it the first approach,
due to its simplified ADT, should be preferred. However this
version may have its disadvantages due to two contradictory
requirements: (1) To have a correct ADT matrix, one has to
apply a Hilbert subspace which containsN states (which results
in a system ofN nuclear SEs to be solved). (2) Given a TD
interaction one may needL (TID) electronic eigenfunctions to
present it reliably (whereL can be larger thanN). Within the
first approachL has to be equal toN even though a set ofN
()L) electronic eigenfunctions may not be sufficient to present
satisfactorily the TD perturbation. Within the second approach
the two numbersN andL areindependent; namely, the number
of SEs to be solved is, as before,N, but this approach allows to
apply a (much) larger electronic basis set to represent the
perturbation. It is true that within this process one encounters
rectangular (as opposed to square) matrices, but the theory, as
presented here, overcomes this obstacle in a reliable, coherent
and consistent way. Thus, the final outcome is a set ofN (not
L) nuclear SEs just like in the previous case and the inconve-
nience as encountered within the second approach is mainly in
constructing the diabatic potential matrix but not in solving the
nuclear SEs.
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Department of Chemistry at the University of Houston where
the time-dependent approach was initiated. He also would like
to thank Professors R. Baer, D. K. Hoffman, D. J. Kouri, and
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Appendix I. Derivation of τ̃, the Dressed Nonadiabatic
Coupling Matrix

Our starting point is eq 28:

Employing eq 23 to presentúT(e|t,ν) we get

∂

∂t
(∇Ã) - ∇( ∂∂t

Ã) ) 0 (36)

B≡ H̃̃e ) ω†H̃eω (37)

∇Ã + τ̃Ã ) 0

ip
∂Ã
∂t

+ τ̃̃eÃ ) 0 (38)

∇Ã + τ̃̃Ã ) 0 (39)

∇̃ ) { ∂

∂q1
,

∂

∂q2
, ...,

∂

∂qn
,ip

∂

∂t} (40)

τ̃̃ ) {τ̃q1
,τ̃q2

, ..., τ̃qn, H̃̃e} (41)

∂

∂µ′τ̃̃µ - ∂

∂µ
τ̃̃µ′ - [ τ̃̃µ,τ̃̃µ′] ) 0; {µ,µ′ ) p,q,t/(ip)} (42)

ip
∂Φ
∂t

) ( - p2

2m
∇2 + W̃e)Φ (43)

W̃e ) Ã†H̃̃eÃ (44)

ipúT(e|t,ν)
∂ψ
∂t

) - p2

2m
{úT(e|t,ν)∇2ψ + 2∇úT(e|t,ν)∇ψ +

(∇2úT(e|t,ν))ψ} (I.1)
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Multiplying eq I.2 each time by one of the|úk(e|t ) 0,ν)〉
functions,k ) 1, ..., L, and integrating the result with respect
to e, the electronic coordinates, and multiplying through by
ω†(t|ν) yield the following outcome:

whereω replacesω(t|ν), τ is TID, namely,τ ) τ(ν) and τ(2)

(which is also TID) stands for

Recalling that for a Hilbert subspace the following relation
holds:1g

we get for eq I.3 the following result:

Next we consider eq 29 and evaluate the following squared
expression:

Recalling eq 30, it is noticed that the two first terms on the rhs
in eqs I.6 and I.7 are identical, and in order to complete the
proof for the derivation of eq 28, we still have to prove the
following identity:

For this purpose weassumethat indeedτ̃ is correctly presented
in eq 30 and, accordingly, we evaluate the lhs of eq I.8 in terms
of τ̃ to verify this assumption:

It is seen that the main obstacle for the expressions of the rhs
of eqs I.8 and I.9 to become equal is the fact that in eq I.9 we
encounter terms that contain∇ ω† which is missing on the rhs
of eq I.8. To overcome this difficulty we activate the grad
operator on eq 27:

which allows one to express∇ω† as follows:

Evaluating the first term on the rhs in eq I.9 and substituting
eq I.11 in the relevant expressions, finally, yields the verification
for eq 30.

It is important to emphasize that this derivation is valid
immaterial if ω is a square or a rectangular matrix.

Appendix II. On the Analyticity of the Ã Matrix in
Configuration Time-Space

In the present appendix we intend to derive the matrixB
(introduced in eqs 33 and 34) that will yield an analyticÃ matrix
in the time-space configuration which (besides being dif-
ferentiable with respect to all coordinates) has to satisfy the
following condition (see eq 36):

From eq 35, we can see thatÃ has to fulfill two first-order
differential equations:

Activating the grad operator on the second equation in eq
II.2, differentiating the first with respect tot (and multiplying
it by (ip)), subtracting the second from the first, and assuming
eq I.1, we obtain the following expression that has to be fulfilled:

Substituting eq II.2 for the relevant terms in eq II.3 yields

or sinceA can be shown to be regular (in fact, even, unitary)
we also have

Recalling eq 30, we evaluate the first term in eq II.4, namely

where we remember that by definition theτ matrix is TID. To
continue, we recall eq 24 and replace, accordingly, the various
time derivatives so that we get:

The next step is to evaluate∇(ω†H̃eω) while incorporating the
fact that

As a result one obtains:

This expression is used to replace, in eq II.5′, the term
ω†(∇H̃e)ω. Therefore, eq II.5′ becomes

ipúT(e|t ) 0,ν)ω(t|ν)
∂ψ
∂t

) - p2

2m
{úT(e|t ) 0,ν)ω(t|ν)∇2ψ +

2∇(úT(e|t ) 0,ν)ω(t|ν))‚∇ψ + ∇2(úT(e|t ) 0,ν)ω(t|ν))ψ}
(I.2)

ip
∂ψ
∂t

) - p2

2m
{∇2ψ + 2ω†(τω + ∇ω)‚∇ψ +

ω†(τ(2)ω + 2τ‚∇ + ∇2ω)ψ} (I.3)

τ(2)
jk ) 〈úT

j(e|t ) 0,ν)|∇2úT
k(e|t ) 0,ν)〉 (I.4)

τ(2) ) ∇τ + τ2 (I.5)

ip
∂ψ
∂t

) - p2

2m
{∇2ψ + 2ω†(τω + ∇ω)‚∇ψ +

ω†(τ2ω + ∇τω + 2τ‚∇ω + ∇2ω)ψ} (I.6)

ip
∂ψ
∂t

) - p2

2m
{∇2ψ + 2τ̃ ‚ ∇ψ + (∇τ̃ + τ̃2)ψ} (I.7)

∇τ̃ + τ̃2 ) ω†(τ2ω + ∇τω + 2τ‚∇ω + ∇2ω) (I.8)

∇τ̃ + τ̃2 ) ∇(ω†τω + ω†∇ω) +
(ω†τω + ω†∇ω)(ω†τω + ω†∇ω) (I.9)

∇(ω†ω) ) (∇ω†)ω + ω†∇ω ) 0 (I.10)

∇ω† ) - ω†(∇ω)ω† (I.11)

ip
∂

∂t
(∇Ã) - ∇(ip ∂

∂t
Ã) ) 0 (II.1)

∇Ã + τ̃Ã ) 0

ip
∂Ã
∂t

+ BÃ ) 0 (II.2)

ip
∂τ̃
∂t

Ã + τ̃ip
∂Ã
∂t

- (∇B)Ã - B∇Ã ) 0 (II.3)

(ip∂τ̃
∂t

- τ̃B - ∇B + Bτ̃)Ã ) 0

ip
∂τ̃
∂t

- τ̃B - ∇B + Bτ̃ ) 0 (II.4)

∂τ̃
∂t

) ∂ω†

∂t
τω + ω†τ∂ω

∂t
+ ∂ω†

∂t
∇ω + ω†∇(∂ω

∂t ) (II.5)

ip
∂τ̃
∂t

) - ω†H̃eτω + ω†τH̃eω + ω†(∇H̃e)ω (II.5’)

∇ω† ) - ω†(∇ω)ω† (II.6)

∇(ω†H̃eω) ) - ω†(∇ω)ω†H̃eω + ω†(∇H̃e)ω + ω†H̃e∇ω

ip
∂τ̃
∂t

) - ω†H̃eτω + ω†τH̃eω + ∇H̃̃e + ω†(∇ω)ω†H̃eω -

ω†H̃e∇ω (II.7)
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To continue, we first introduce a new definition, i.e.,H̃̃e:

and secondly, we substitute eqs II.7 and II.8 into eq II.4 so that
following a few algebraic manipulations we get

It is well noticed that this expression becomes identically zero
assumingB ≡ H̃̃.
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H̃̃e ) ω†H̃eω (II.8)

- H̃̃eτ̃ + τ̃H̃̃e + ∇H̃̃e - τ̃B - ∇B + Bτ̃ ) 0 (II.9)

4730 J. Phys. Chem. A, Vol. 107, No. 23, 2003 Baer


